
KETA: Kinematic-Phrases-Enhanced
Text-to-Motion Generation via Fine-grained

Alignment
Yu Jiang*

Zhiyuan College
Shanghai Jiao Tong University

Shanghai, China
jy 15924374500@sjtu.edu.cn

Yixing Chen*

Zhiyuan College
Shanghai Jiao Tong University

Shanghai, China
polaris dane@sjtu.edu.cn

Xingyang Li*
Zhiyuan College

Shanghai Jiao Tong University
Shanghai, China

brucelee sjtu@sjtu.edu.cn

Abstract—Motion synthesis plays a vital role in various fields
of artificial intelligence. Among the various conditions of motion
generation, text can describe motion details elaborately and is
easy to acquire, making text-to-motion(T2M) generation impor-
tant. State-of-the-art T2M techniques mainly leverage diffusion
models to generate motions with text prompts as guidance,
tackling the many-to-many nature of T2M tasks. However,
existing T2M approaches face challenges, given the gap between
the natural language domain and the physical domain, making
it difficult to generate motions fully consistent with the texts.

We leverage kinematic phrases(KP), an intermediate repre-
sentation that bridges these two modalities, to solve this. Our
proposed method, KETA, decomposes the given text into several
decomposed texts via a language model. It trains an aligner to
align decomposed texts with the KP segments extracted from the
generated motions. Thus, it’s possible to restrict the behaviors for
diffusion-based T2M models. During the training stage, we deploy
the text-KP alignment loss as an auxiliary goal to supervise
the models. During the inference stage, we refine our generated
motions for multiple rounds in our decoder structure, where we
compute the text-KP distance as the guidance signal in each
new round. Experiments demonstrate that KETA achieves up to
1.19×, 2.34× better R precision and FID value on both backbones
of the base model, motion diffusion model. Compared to a wide
range of T2M generation models. KETA achieves either the best
or the second-best performance.

I. INTRODUCTION

Motion synthesis is an important task that is widely applied
in today’s artificial intelligence technologies [1], enhancing
the development of the interaction between humans and com-
puters [2], [3], computer vision [4], [5], et cetera. Substan-
tial guidance information is required to describe motions,
making text-to-motion(T2M) generation essential. Currently,
many T2M models [6]–[8] exploit traditional machine-learning
techniques to generate photo-realistic motions. Among these
methods, diffusion-based T2M models [9], [10] offer the best
performance by tackling the many-to-many nature of T2M
tasks, where the natural language yields ambiguity and the
motion has various descriptions.
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However, another problem is the intrinsic gap between
language and motion space. Language is abstract and con-
cise for better human usage and communication, making the
corresponding space sparse and discrete. Motion is continuous
as it is directly based on physical space. Such a gap results
in the degradation of motion quality. Previous T2M models
fail to cope with texts with spatial and temporal objectives,
generating either motion unrelated to the text or wrong in
temporal order and spatial position, as illustrated in Fig. 1(a).

Researchers propose Kinematic Phrases (KP) [11] to ex-
tract abstract and general kinematic facts from motions. As
illustrated in Fig. 1(b), KP captures the innate features of
motion by computing relative position and its change over
time. KP appears in comprehensible natural language and
sticks to objective kinematic facts.

Inspired by KP, we leverage it to construct fine-grained
alignments to restrict the physical behaviors of motions. Our
key insight is that (1)KP bridges motion and action-level
knowledge about the motions, possibly enhancing the T2M
process, and (2)sequential fine-grained sentences provide
detailed information on action semantics and the temporal
relationship among the motions. Specifically, we first intro-
duce an LLM agent to split the original text into decomposed
texts, making a finer text granularity. Then, we extract KP
from the dataset, acquiring their spatial and temporal features
and corresponding constraints. We use an encoder to project
text information onto the KP space. Next, our proposed
domain model identifies a Gaussian distribution weight for the
particular segment of KP assigned to the decomposed text. Our
alignment goal is to minimize the distance on the KP space
by co-training the encoder and the domain model.

Based on the fine-grained alignment approach, we propose
KETA to enhance the training and inference process of
diffusion-based T2M models. In the training stage, we add
an auxiliary alignment loss for text and KP extracted from
generated motions. Moreover, we smooth the KP with the tanh
operator to allow back propagation instead of solely consid-
ering its sign. We also provide a decoder model, utilizing the
difference between the generated KP and text as an additional
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Fig. 1: Overview of KETA, a physical-state-aware T2M model via fine-grained alignment between text and KP.

token with a mask, and train the model to predict the clean
motion with this guidance signal. Consequently, the model can
step towards more physically consistent motion generation.

During the inference stage, we expand the diffusion process
into T cycles of full denoising and diffusing. We utilize our
text-KP alignment results in this process by constantly using
the difference between the current generated KP and the given
text as a guidance signal for denoising in the next step.
This allows us to generate motion in a closed-loop manner,
continuously refining the motion generated with guidance
toward the given text for pre-defined steps.

Our contributions can be summarized as follows:
• We prompt a language model to split the texts into

decomposed parts and introduce a method to align them
by training an encoder to project the decomposed texts
onto the KP space and evaluate their similarities with the
corresponding KP segments.

• We use the fine-grained text-KP alignment as an auxiliary
goal and supervision for training. We augment the KP
with smoothing to allow back propagation in training.

• During the inference stage of the diffusion-based T2M
model, we use a guidance signal based on the relative
distance between the current generated motion’s KP and
text on the aligned space to refine the current motion in
each round of iteration towards our expected goal in a
closed-loop manner.

• The encoder model of KETA gains up to 1.19×, 2.34×
better R-precision and FID value than both backbones of
our base motion diffusion model and is either the best
or the second-best model compared with various T2M
models on these metrics.

II. BACKGROUND AND RELATED WORK

A. Motion Diffusion Model

The Human Motion Diffusion Model(MDM) [9] is a
classifier-free diffusion transformer-based model for motions
corresponding to different prompts, like texts and actions.

Diffusion Models. We begin by explaining the theoretical
basis of diffusion models [12], [13]. Diffusion models train
a model for predicting the noise, thus generating results. By
modeling the process of diffusing data in a certain distribution
to pure noise and the reverse process of denoising pure noise
back to in-distribution data. In the diffuse process [12], Gaus-
sian noise is iteratively added according to a given schedule
denoted β1:T .

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

Let αt = 1 − βt, ᾱt = α1α2 · · ·αt, then we can directly
obtain xt by sampling only once. The noise here follows a
normal distribution: ϵ ∼ N (0, I).

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

For the reverse direction, we try to denoise sampled
noise to the original distribution by the following formula,
which can be derived from Bayes’ law q(xt−1|xt, x0) =
q(xt|qxt−1

)q(xt−1|x0)

q(xt|x0)
.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Note that the noise ϵ is unknown at this point, so we utilize
a model to predict the noise added with the input of the current
diffuse result xt and the diffuse timestep t.

At training time, we diffuse x0 to random timestep t with
sampled noise ϵ and utilize the model to predict the noise
under the loss function of:

L = Ex0,t[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2]

Classifier-free Guidance. Classifier-free guidance [14] is
a technique for diffusion models that improves the sample
quality without relying on an external classifier. Classifier-free
guidance diffusion models train an unconditional denoising
diffusion model pθ(z) alongside a conditional model, pθ(z|c),
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Fig. 2: Left: The Motion Diffusion Model (MDM) overview.
The input is the motion sequence of length, the current
timestep t, and a conditioning code, then a Text Encoder
projects and adds them to get the input token ztk. During each
step, the clean motion is predicted. Right: MDM Sampling.
Given a condition c, the model iterates to get the refined
motion predicting a clean sample and diffuses it back in each
round.

both parameterized by a single neural network. A null token is
deemed the input as the class identifier c for the unconditional
model.

During the training phase, we randomly choose c with
probability puncond, improving joint training of both models
while eliminating the need for extra model complexity of pa-
rameters. During the sampling phase, classifier-free guidance
is implemented by adding the conditional and unconditional
scores together linearly through a score estimation formula:

s̃(z|c) = (1 + w)s(z|c)− ws(z)

Here, w denotes the strength of the guidance, while
s(z|c), s(z) denotes the score estimates from the conditional
and unconditional models, respectively. The added score
guides the sampling process, achieving the trade-off in sample
quality without relying on classifier gradients. Classifier-free
guidance diffusion models have demonstrated superior sam-
ples over vanilla sampling techniques and are widely deployed
in SOTA diffusion-based models [15], [16].

Motion Diffusion Model. MDM utilizes a CLIP model
to obtain text embedding, which, along with timestep t, are
projected into a token ztk. A transformer encoder is then de-
ployed to predict the final clean motion from the concatenation
of noisy motion sequence and the input oken ztk.

Fig. 2 illustrates the inference stage of MDM. At each
timestep t, MDM predicts the clean motion from the previous
diffused result xt and then diffuses it back to xt−1, which can
be considered refining generated motion.

B. KP

Motion understanding is an important task that is widely
applied in autonomous settings. However, assessing the con-
sistency between action semantics and motions is challenging
because motions usually convey multiple intentions in different
contexts, and various motions can depict action semantics.

Kinematic Phrases(KP) are proposed to resolve the gap
between motion and action semantics by focusing on objective

kinematic facts, like the movements of different joints or
organs. Also, KP uses a signed bit to denote the direction
of these movements. Consequently, the change in the sign of
KP represents the change in the person’s physical condition.
Through such abstract and interpretable representation, we can
leverage KP to learn objective physical information about the
motions, thus adding proper restrictions to motion generation
to align motions with kinematic behaviors.

III. METHODS

A. Overview

T2M models aim to synthesize human motion from a given
text. KETA contains a text decomposition agent(DA), an
alignment model(AA), and an MDM-based motion generation
model. When a text description of the wanted motion is
provided, it is first decomposed into several sentences by
the DA, which are subsequently encoded by the Llama [17]
language model into text embeddings. The AA then computes
each decomposed text’s domain range and weight; thus, it can
align the text to the corresponding domain on the KP space.

Our vanilla approach is to directly add the align loss
computed by the AA from the whole sentence into the
aggregate loss of the MDM by using the encoder backbone.
Therefore, we can supervise the motion generation process
from a physically coherent perspective. To further enhance the
model with the help of KP, we also adopt a decoder backbone
for MDM with the decomposed texts as input and a guide
token as guidance so that the inference process of MDM can
be continuously refined. Specifically, we use the difference
between the current generated motion’s weighted KP and the
text feature as the guide token to guide the refinement toward
the desired description.

B. Text Decomposition

Existing methods for motion synthesis struggle to follow
semantic instructions, especially when it comes to tempo-
rally and spatially specific instructions. Models must first
comprehend these relations and then realize them in the
physical space, making it hard to do it end-to-end. Instructions
are needed to explicitly clarify these temporal and spatial
relationships to tackle this. We believe that advanced large
language models can play a critical role by decomposing the
whole text into separate texts that follow the temporal and
spatial order of the generated motions. Therefore, the motion
generation model can better understand the inherent physical
constraints.

KETA uses an agent derived from GPT-4o-mini [18] to
decompose the given text with the following prompt. The
agent generates decomposed texts ranging from 3 to at most
20 sentences for a given text prompt, having high fidelity in
temporal order while reserving the text’s original meaning.
Fig. 3 (c) depicts the whole process.

You are a highly specialized assistant designed to
analyze and process textual descriptions of human
actions. Your primary function is to decompose
these descriptions into fine-grained actions arranged



chronologically. Focus on detecting and interpreting
sequence markers like ’then,’ ’twice,’ ’again,’ and
other words indicating repetitions or transitions.
Ensure that your decomposition explicitly outlines:
1. The initial state of the posture or action. 2.
Detailed intermediate steps. 3. The final state.

C. Text-KP Alignment

KP extraction is based on the human body joint sequence
X = {xi | xi ∈ Rnj×3} where nj is the number of joints,
and i is the current time frame. Several extraction functions
fj compute values from the joint sequence. After that, the
function values are passed through an indicator function for
each frame, generating the final KP sequence of {−1, 0, 1}n.

KPj(xi) = sign(fj(xi))

The original KP generation process has operations that
do not have a gradient, such as the indicator function sign.
To leverage KP in training, we replace them with smooth
activation functions with available gradients.

KPj(xi) = tanh(fj(xi))

The next step is aligning the KP sequence with the de-
composed texts. As KP is different for every single frame,
there’s difficulty in aligning the whole KP sequence with
some specific texts. As mentioned in III-A, we compute a
special weighted KP for a decomposed text and align the
corresponding text feature with it.

Our insight is that each decomposed text takes effect in its
time domain. This is intuitive because the first few decom-
posed texts correlate more with the first few frames of the KP
sequence. Similarly, the motion at a given moment results from
all decomposed texts with a domain covering that moment.
Thus, we model the domain weight of each decomposed text
as a Gaussian distribution, as shown in Fig. 3 (b).

The reason for choosing such distribution is straightforward
since we can divide the whole motion into a composition
of three stages for each decomposed text, respectively: the
transition from the previous motion segment, the current
motion segment, and the transition to the next motion segment.
Of the three stages, the second one is dominated by the current
text only, while the other two result from intersection with
different text. The current text’s influence increases as the
current action begins and fades away as the current action
is done, matching the tendency of a Gaussian distribution.

We also provide a ”feasible window” for each decomposed
text to locate its distribution to ensure the overall temporal
structure of the whole motion. Without the window, the weight
distribution of different texts tends to converge to similar ones.
For a sequence of motion of length T with n decomposed
text, the range for the i−th window [li, ri] is defined by the
following expression:


li =

i

n− 1
· T
n

· (n− 1− 1

log(n+ 2)
),

ri = li +
T

n
·
(
1 +

1

log(n+ 2)

)
A 2-layer MLP extracts text features of the same dimension

as KP. As for the domain model, we use a transformer decoder
architecture to decode the weight over the text domain with
the text feature as the query. The weighted KP Ωi is calculated
by:

Ωi =
∑

j∈domaini

wjKPj

In summary, the overall align loss for a decomposed text
embedding sequence {Ti}ni=1 is:

L =
∑
i

||Ωi − MLP(Ti)||2

D. Motion Generation with Iterative Refinement by Alignment

Beyond controlling the motion generation process with
physical constraints via adding auxiliary loss, we want to
involve the decomposed texts directly in the diffusion model.
However, the original implementation of MDM with a trans-
former encoder architecture fails to meet such need. We solve
this by using the transformer decoder as the backbone, where
the decomposed embeddings are concatenated as the query for
cross-attention layers.

In the MDM framework, clean motion is directly gener-
ated for each timestep of denoising. It iteratively refines the
generated motion by diffusing the generated clean motion to a
decreasing timestep t and denoise it again. However, the model
fails to notice the problem in physical states with the current
motion during this process, making the refinement rather
blind. To resolve this, we utilize our alignment framework
by introducing a guidance token into our model structure. By
comparing the KP extracted from the current generated motion
with the desired text description, we can inform the model of
where refinement is needed and how to refine it. Moreover,
we can consider the diffused motion in the training phase as
motion that needs to be refined, which offers abundant data
for training our module of guided refinement.

IV. EVALUATION

A. Experimental Setup

We briefly introduce the baseline models, datasets, and
evaluation metrics we use to test our model’s performance
to help readers understand the experiment details holistically.

Baseline Models and Datasets. We evaluate the impact
of KETA on the Human Motion Diffusion Model(MDM) [9],
a diffusion-based motion generation model with both trans-
former encoder and decoder structure. We assess the model on
the HumanML3D [19] dataset, which stems from the combi-
nation of the HumanAct12 [20] and Amass [21] and is consid-
ered a comprehensive dataset of human actions. Specifically,
HumanML3D comprises 14646 motions and 44970 motion
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annotations. We also compare the performance of KETA
with a wide range of state-of-the-art T2M models, including
MDM(both encoder and decoder structure) [9], MAA [22] and
OMG [23].

Evaluation Metrics. We evaluate KETA-enhanced MDM
via standard metrics introduced in a previous work [19]. The
metrics involve Frechet Inception Distance (FID), diversity,
and R-Precision. FID is a metric that evaluates the dissimilarity
between the generated sample and the ground truth, which
should be as low as possible. Diversity assesses the distribution
range of motions, and the closer the diversity value between
the assessed model and the ground truth, the better the model.
R-Precision evaluates the similarity between text prompts and
generated motions on a semantic level by searching the text
features in the motions. This means a model is greater if it
demonstrates a higher R-precision value.

Implementation. We implement our methodology of
KETA on MDM’s encoder and decoder backbone. For the
encoder structure, we can only utilize the auxiliary alignment
loss. For the decoder structure, the inference process is itera-
tively refined with alignment difference. Our KETA-enhanced
MDM is trained with 1500 epochs, the same as the original
MDM. The text encoder we use is a Llama 3.1 model, and
we use GPT-4o-mini to decompose the text. We use a scaling
coefficient λKP to control the impact of text-to-KP alignment
on the model. We set λKP = 0.0001 in our implementation.
We train our KETA-enhanced MDM on a single NVIDIA
A100 GPU [24]. The full training process takes about 4 days.

B. Performance

Tab. I demonstrates the performance of KETA-enhanced
MDM compared with multiple SOTA T2M models on var-
ious metrics. Specifically, illustrated in Fig. 4, compared
with the original MDM model, the encoder backbone of

Methods R-Precision ↑ FID↓ Diversity→

Real 0.797 0.002 9.503

MDM(encoder) 0.611 0.544 9.559
MDM(decoder) 0.621 0.567 9.425
MAA 0.675 0.774 8.230
OMG 0.784 0.381 9.657

Ours(encoder) 0.728 0.279 9.487
Ours(decoder) 0.737 0.242 9.605

TABLE I: The performance of KETA compared with various
baselines.
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Fig. 4: Comparison between KETA and MDM, both the trans-
former encoder and decoder structure of KETA outperform
their MDM counterparts in both FID and R-precision.

KETA achieves 1.19× higher R-Precision value, 1.99× lower
FID value. In comparison, the decoder backbone of KETA
achieves 1.18× higher R-precision value and 2.34× lower FID
value. Both backbones surpass the base model in all aspects.
Moreover, compared with the SOTA T2M models, KETA
achieves the best result in both FID and Diversity. KETA is
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𝒅 = 𝟎. 𝟓𝟏𝟒𝟏

Prompt: A man walks forward, then squats
to pick something up with both hands, 
stands back up, and resumes walking.

𝒅 = [𝟎. 𝟗𝟗𝟔, 𝟎. 𝟗𝟗𝟕, 𝟎. 𝟗𝟓𝟗, 𝟎. 𝟗𝟖𝟒]

𝒅 = [𝟎. 𝟕𝟖𝟖, 𝟎. 𝟖𝟎𝟏, 𝟎. 𝟗𝟎𝟐, 𝟎. 𝟏𝟒𝟓]

ours

MDM

Fig. 5: The motions generated by KETA compared with MDM, our generated motions are consistent with the text prompts,
showing higher text-to-motion similarity. Meanwhile, MDM fails to achieve spatial and temporal consistency.

also second-best in R-Precison.

C. Impact of our Fine-grained Alignment
Fig. 5 depicts the motion generated by KETA and the base

model MDM. The deepening colors represent the passage
of time, with darker hues corresponding to later states. For
the prompt, ”A man runs backward,” the motion generated
by MDM illustrates a person running forward, violating the
prompt. On the other hand, KETA-enhanced MDM perfectly
adheres to the prompt, suiting spatial constraints. Regarding
the prompt, ”A man walks forward, then squats to pick
something up with both hands, stands back up, and resumes
walking,” the motion generated by MDM doesn’t walk in the
beginning or resume walking in the end. At the same time,
our model suits this prompt, showing that our model resolves
the temporal relationships.

From a quantitative perspective, we also evaluate the cosine
similarity between the text feature and the motions generated
by our model, KETA, via the alignment model we designed.
For the first prompt, the overall cosine similarity d̂ between
the text feature and the motions generated by KETA is higher
than that in MDM. For the second prompt, the MDM fails
to be consistent with the first and the last action, so it has a
substantially lower text-to-motion similarity for the first and
the last decomposed texts. However, the motions generated
by our model KETA demonstrated high capability in aligning
with all the decomposed texts, showing the strong power of
our KP-enhanced T2M generation via fine-grained alignment.

D. Ablation Study

We test the performance of KETA with the fine-grained
alignment and the alignment between the full KP and the
full text. As shown in Tab. II, although the full align encoder
backbone of KETA has slightly better FID, it has worse R-
precision compared with its fine-grained align counterpart,
meaning the fine-grained align model has better ability in
aligning with the prompt text. Moreover, the fine-grained align
model has a smaller difference in diversity to ground truth,
meaning they are more similar. In conclusion, our fine-grained
alignment approach generates temporally and spatially correct
motions better than directly employing full-text alignment.

Methods R-Precision ↑ FID↓ Diversity→

Real 0.797 0.002 9.503

KETA enc.(fine-grained align) 0.728 0.279 9.487
KETA enc.(full align) 0.707 0.264 9.536

TABLE II: Comparison between the performance of KETA
encoder structure with and without the fine-grained alignment.

V. CONCLUSION

In this paper, we propose KETA, a physical-behavior-aware
text-to-motion generation with the help of fine-grained text-
KP alignment, taking one step towards physical-consistent
text-to-motion generation. KETA significantly optimizes both
the encoder and the decoder backbone of the base motion



diffusion model, achieving up to 1.19× and 2.34× better R-
precision, FID value. Compared to a wide range of text-to-
motion generation models. KETA achieves either the best or
the second-best performance. We hope that in the future, more
works can find inspiration in our work and focus on leveraging
physical details to boost the quality of motion generation.
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